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List of symbols and Abbreviations
General Notations and Functions

•: scalar value

•: vector value

•: tensor value

·: scalar product

×: matrix or tensor product

|| • ||: norm∏n
i=0 •i: product from 0 to n

cos, sin, tan: trigonometric functions

√
•: square root

∂•
∂• : partial derivative

•−1: inverse of a function or matrix

•T : transposition of a matrix

⊗: vectorical product

Coordinates

x, y, z: coordinates in the global basis

a1, a2, a3: coordinates in the local basis

Fields and Physical Quantities

v: velocity �eld

vi: nodal velocity vector

v%: ratio of velocities

E: strain

Ė: strain rate

F: deformation tensor

L: gradient of the velocity �eld

Arelat: relative anisotropy factor

σ•: standard deviation of •

•: mean of •

Geometry and Shape Functions



Ni(): shape functions of an element

DN : matrix of the derivatives of the shape functions

Positions and Paths

xn: position of the particle at time increment n

tn: tangent vector to the �ow line

dl: small vector

Φ: function that de�nes the particle position

Rotation and Transformation Matrices

Ri: rotation matrices

P : matrix of change of basis

ϕ, θ, ψ: rotation angles

Mathematical and Matrix Operations

J : Jacobian matrix

grad: gradient function

X: variable in polynomial equations

mij: component (i, j) of matrix M

•D: deviatoric part of a tensor

Tr(•): trace of a matrix

Variables and Increments

a, b: general variables

dt: time increment



1 Introduction to models of alpine glaciers and ice caps

1.1 Overview of alpine glaciers and ice caps

Alpine glaciers and ice caps comprise the majority of Earth's freshwater resources, with ap-
proximately 97% of the planet's freshwater stored within these frozen reserves (Barry, 2011).
In recent years, global temperature increases have accelerated the melting of these ice masses,
contributing signi�cantly to sea level rise. It is estimated that the meltwater from glaciers and
ice caps currently adds about 1.48mm/year to global sea levels (Jacob et al., 2012).

Within the cryosphere, ice structures are generally categorized into two major types: ice caps
and glaciers. Ice caps are extensive sheets of ice predominantly located at polar regions, where
persistent snowfall accumulates and compacts over time through processes such as compression
and recrystallization. This accumulation gradually transforms into dense ice layers, which, due
to their massive weight, �ow outward like a very slow-moving �uid toward the edges of the
ice sheet, where they eventually melt or calve into the sea or on land. These ice sheets are
substantial, often measuring up to more than 3 km, and constitute the bulk of the cryosphere
(see Figure 1).

0 km 500 km

(a) Satellite image of Greenland with scale refer-
ence.

0 km 1000 km−90◦E

0◦E

90◦E

−180◦E

(b) Satellite image of Antarctica with scale refer-
ence.

Figure 1: The two primary polar ice sheets on Earth (GoogleEarth, 2024).

The second type of ice structure, glaciers they are typically smaller than ice caps and are most
often located in mountainous regions. Glaciers exhibit a similar water cycle to ice caps, where
snow accumulates in an upper area known as the accumulation zone, compresses into ice, and
�ows downward to the ablation zone, where melting occurs (see Figure 2). Glaciers are generally
less extensive than ice caps, with lengths often measured in kilometers and thicknesses reaching
up to several hundred meters.
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0 m 1000 m

Figure 2: Satellite image of Argentière Glacier (GoogleEarth, 2024). The ablation area is
marked in red at the glacier's lower regions, while the accumulation area is shown in blue.

A distinctive feature of glaciers is their temperature variability, as they exist at a wide range of
altitudes�from low-elevation glaciers like Engabreen in Norway, at approximately 20 meters, to
high-altitude glaciers such as Khumbu Glacier in Nepal, reaching altitudes of up to 7600 meters.
This diversity in altitude results in signi�cant temperature di�erences among glaciers, leading
to their classi�cation into two main types: cold glaciers, where the ice temperature remains
below 0◦C, and temperate glaciers, where the ice temperature is at or near 0◦C throughout.
The combination of the two aspects is also possible with a glacier that is cold in one area and
temperate in the other ares.

1.2 Modeling Ice Flow Using Elmer/Ice

Various software tools are available for modeling the dynamics of ice sheets and glaciers, with
Elmer/Ice being a particularly versatile and widely used option. Elmer/Ice is a specialized
module of the open-source Elmer �nite element software, developed speci�cally for glaciolog-
ical applications (Elmer). Written in FORTRAN 90 and C, Elmer/Ice is highly competitive
with commercial modeling software in terms of computational e�ciency and �exibility.

Elmer/Ice provides a range of customizable options, allowing users to select di�erent physi-
cal laws for each aspect of the glacier model, as outlined by Thomas ZWINGER (2019). To
accurately simulate ice �ow, a suitable �ow law must be de�ned to characterize the ice's rheo-
logical behavior. Additionally, a basal friction law is required to model the glacier-bed interface
conditions. Various approximations of the velocity �elds can also be employed to simplify
computations, depending on the model's objectives and computational resources.

1.2.1 Determining Glacier Geometry

The initial step in modeling glaciers or ice caps is to de�ne the geometry of the ice mass, which
is determined by the top and bottom surfaces of the glacier. The top surface, representing the
glacier's exposed surface, can be accurately mapped using digital elevation models (DEMs).
These models are often generated through advanced technologies like light detection and rang-
ing (LiDAR) from drones or airplanes, providing high-precision surface data, as demonstrated
by Gindraux et al. (2017).
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The bottom surface, or bedrock topography, poses a greater challenge in data acquisition since
direct measurements are typically unfeasible. For relatively thin ice layers with minimal impu-
rities, ground-penetrating radar (GPR) is an e�ective method, as demonstrated by Collins et al.
(1989). GPR works by emitting radio waves through the ice, these waves re�ect upon reaching
the bedrock, and the returned signals are then used to calculate the ice thickness. However,
GPR accuracy diminishes if the ice contains fractures or impurities, which can cause noise in
the re�ected signal, thereby reducing the precision of the bedrock topography. Additionally, for
thicker ice masses, GPR is less e�ective because radio waves tend to be absorbed and scattered,
resulting in limited accuracy for deep ice.

An alternative method involves drilling with a ice core drill or a hot water system a boreholes
across the glacier or ice cap, providing localized measurements with a high level of certainty.
While boreholes o�er precise data points and allow for numerous mesurements and experiments
for other research �elds, they are labor-intensive and do not provide comprehensive coverage of
the glacier's bed. The drilling process also becomes increasingly challenging at greater depths,
making this technique impractical for extensive ice caps or glaciers it is thus used to precise
other methodes of data aquisition.

The most commonly adopted approach combines surface velocity measurements, mass balance
data, and boundary condition assumptions to construct a �nite element model of the glacier.
Using this model, an inverse method can be applied to estimate ice thickness. This approach
leverages accessible data, such as surface velocity �elds (often derived from digital image corre-
lation) and mass balance measurements obtained through �eld surveys. Although this method
provides a practical solution for estimating ice thickness, it is sensitive to the assumptions and
approximations made in the inverse modeling process, as highlighted by Michel et al. (2013).

1.2.2 Time Evolution in Glacier Simulations

In glacier simulations, di�erent approaches are employed to approximate the time evolution of
the glacier's state. The simplest and most computationally e�cient approach is to construct a
steady-state model. In a steady-state simulation, time dependency is ignored, and the glacier is
assumed to be in equilibrium, with a constant geometry and stabilized velocity �elds obtained
after a hypothetical in�nite relaxation time. These simulations are accurate only if the glacier
has a constant mass balanced, meaning the volume of water entering and exiting the glacier is
equal. Steady-state models do not incorporate time-varying data, such as annual precipitation
rates or temperature changes.

A more sophisticated and realistic approach for simulating glaciers and ice caps is to use a
transient model, as exempli�ed in the case of Argentière Glacier (Gilbert et al., 2023). In
transient simulations, the glacier does not reach equilibrium, instead, its evolution is calculated
step-by-step from a speci�ed initial condition, allowing for continuous changes over time. Tran-
sient models require a detailed and dynamic mass balance to apply appropriate conditions at
each time step, along with a time-dependent temperature pro�le. Unlike steady-state models,
transient simulations involve a deforming mesh that adapts to changes in glacier geometry over
time. Given that glaciers can experience signi�cant deformations, remeshing may be necessary
after a certain number of time steps to maintain accuracy. In addition, masks are applied to
exclude areas that have melted from subsequent computations. Although transient models are
more complex to implement, they provide more accurate and realistic results by accounting for
temporal variations in glacier conditions.
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1.2.3 Basal Friction Law

The choice of basal friction law plays a crucial role in accurately modeling glacier and ice cap
dynamics, as it signi�cantly a�ects the interaction between the glacier base and the underlying
bedrock. Basal friction depends on factors such as the bedrock shape (Lliboutry, 1979) and
surface roughness (Budd et al., 1979). Obtaining experimental data to accurately constrain
the basal friction law is challenging, which makes selecting an appropriate law and determining
its parameters complex. Additionally, when using inverse modeling to estimate the glacier
bed's digital elevation model (DEM), the basal friction law often becomes a tuning parameter,
potentially obscuring other physical processes such as dynamic recrystallization.
Elmer/Ice provides several basal friction laws that can be implemented in �nite element models,
each with unique characteristics suited to di�erent glaciological conditions:

Linear Law: The linear basal friction law is a straightforward model based on Coulomb's prin-
ciples (Coulomb, 1785). It assumes a direct linear relationship between basal shear stress and
sliding velocity of the ice over the bed. This law is suitable for scenarios where basal sliding
occurs over smooth bed surfaces with minimal topographical variation. However, its simplicity
can be limiting in complex glacier systems with rough or highly variable bed conditions, where
basal friction may vary signi�cantly.

Weertman Law: Proposed by Weertman (1957), this foundational sliding law models basal fric-
tion as a non-linear function of e�ective pressure at the bed and sliding velocity. The Weertman
law includes power-law terms that capture the complex, non-linear relationship between shear
stress and velocity. This approach is particularly useful for glaciers with irregular bedrock to-
pography, where sliding behavior depends on pressure variations and meltwater presence. The
Weertman law is widely used in glaciology and provides a basis for more advanced friction laws.

Modi�ed Coulomb Law: Gagliardini et al. (2007) extended the traditional Coulomb law to
better model glaciers with debris-laden bases. In this formulation, basal friction is not solely
dependent on sliding velocity but also on basal e�ective pressure, making it well-suited for
temperate glaciers where subglacial water and debris a�ect sliding dynamics. The modi�ed
Coulomb law adapts to varying bed conditions and provides a more realistic representation of
sliding at the glacier-bed interface, especially in scenarios with �uctuating basal water pressure.

Budd Law: Introduced by Budd et al. (1979), this law incorporates bed roughness and surface
melt conditions into the basal friction calculation. Budd's law includes terms for both rugosity
and sliding velocity, enabling it to account for friction e�ects due to bedrock irregularities. This
model is particularly advantageous for glaciers with rough or complex bed topography, as it
provides a more realistic friction pro�le when the glacier bed is highly variable. Additionally,
Budd's law accounts for meltwater in�uence, which can reduce basal friction and enhance slid-
ing, especially in warmer climates or during melt seasons.

Tsai Law: Developed byTsai et al. (2015), this modern friction law addresses some limitations
of earlier models by incorporating hydrological processes at the glacier bed. Tsai's model con-
siders feedback mechanisms between basal water pressure, ice velocity, and e�ective pressure,
allowing for a more accurate simulation of glaciers in�uenced by hydrodynamic variations. This
law is ideal for transient models that capture short-term �uctuations in glacier velocity associ-
ated with seasonal or event-driven meltwater pulses, making it particularly relevant for regions
where glacier movement is sensitive to water input changes.

Each of these basal friction laws o�ers distinct advantages depending on the glacier's environ-
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mental conditions and the simulation's objectives. The choice of law should align with the
speci�c dynamics of the glacier or ice cap being modeled to achieve an accurate representation
of basal sliding behavior.

1.2.4 Approximation of the vertical Velocity Field

After selecting the �ow law and establishing boundary conditions, it is necessary to choose
the appropriate equations to represent glacier �ow. Although the full Stokes equations o�er a
complete 3D solution to �uid mechanics problems, they are often too computationally intensive
for large-scale glacier modeling. Therefore, several approximations are typically employed to
reduce complexity by solving a 2D problem and then calculating the third velocity component
(the vertical or z velocity) using various techniques:

Full Stokes Approximation: The full Stokes approach (Stokes, 2007) provides the most precise
solution by solving the entire set of Stokes equations without simpli�cations, accounting for all
stress components and three-dimensional �ow dynamics. This approach is well-suited for mod-
eling glaciers with intricate geometries or varying bed topographies, where any simpli�cations
could omit critical dynamics. Although it o�ers the most accurate z-velocity �eld calculation,
the full Stokes approximation demands substantial computational resources, making it imprac-
tical for large-scale or long-duration simulations. Consequently, this method is generally applied
in high-�delity studies focused on speci�c glacier regions rather than entire ice sheets or glaciers.

Shallow Shelf Approximation (SSA): The SSA, as presented by Morlighem et al. (2013), is a
2D simpli�cation that assumes horizontal stress gradients dominate over vertical shear stresses,
ideal for fast-�owing glaciers and ice streams where horizontal �ow is the primary driver. SSA
is particularly applicable to ice shelves and �oating glacier tongues, where basal drag is mini-
mal and vertical shearing can be ignored. This approximation accelerates computations while
accurately capturing horizontal �ow characteristics; however, it is less e�ective for areas with
signi�cant basal friction or where accurate vertical velocity (z-velocity) representation is re-
quired.

Shallow Ice Approximation (SIA): The SIA, formalized by Hutter (2017), is another 2D ap-
proach tailored for glaciers where vertical shear stresses play a dominant role, such as those
found on steep slopes with high basal drag. SIA assumes that horizontal stress gradients are
negligible compared to vertical ones, making it suitable for slow-moving glaciers where vertical
shearing is the primary �ow mechanism. While e�cient and useful for cases with substantial
bed friction, the SIA is limited in its applicability to fast-�owing glaciers or �oating ice, as
it does not capture horizontal stress e�ects well. This simpli�cation allows e�cient z-velocity
calculations in regions where vertical shearing governs ice movement.

Improved Shallow Ice Approximation with Lateral Drag (ISCAL): The ISCAL approximation,
developed for use in the Elmer/Ice framework (elmerice, 2017), enhances the basic SIA by
including lateral drag e�ects and permitting longitudinal stress coupling along the glacier's
length. ISCAL re�nes SIA by accounting for lateral and basal drag interactions, making it
more accurate for glaciers with variable bed conditions or lateral constraints. By incorporat-
ing these coupling e�ects, ISCAL o�ers a more realistic approximation of the 3D �ow while
retaining the computational e�ciency of a 2D model. This approach strikes a balance between
the simplicity of SIA and the detail provided by the full Stokes solution, making it suitable for
glaciers with mixed basal characteristics and moderate sliding.
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Each of these approximations presents trade-o�s between computational e�ciency and physical
accuracy. The choice of method should align with the speci�c goals and conditions of the glacier
model to ensure appropriate representation of the z-velocity �eld.

1.2.5 Flow Law

Once the mesh, boundary conditions, and governing �ow law have been established, it is nec-
essary to select an appropriate material law to represent ice behavior. The choice of this law
will vary depending on the desired accuracy and complexity of the model.

1.2.5.1 Anisotropy of single crystal Ice

Unlike many materials, which tend to be isotropic and possess a cubic crystal structure, ice
has a hexagonal crystal structure, as illustrated in Figure 3. Due to this hexagonal structure,
ice crystals have a preferred orientation, represented by a speci�c direction in space, commonly
denoted by the c-axis.

c

Figure 3: Hexagonal structure of an ice crystal with oxygens atoms in red

This hexagonal structure gives ice its highly anisotropic properties, enabling deformation along
three split systems. Each slip system contains multiple slip planes, one of those slip planes is
represend in Figure 4 for each type of slip system. These three primary deformation systems
de�ne the possible modes of viscoplastic deformation within an ice monocrystal; any other type
of deformation will essentially be a combination of the activation of slip planes in these 3 slip
systems.
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(a) Basal slip plane

c

(b) Prism slip plane

c

(c) Pyramidal slip plane

Figure 4: Slip planes of ice crystals

The anisotropic nature of ice is a result the activation of the di�erent slip systems, each requir-
ing di�erent stress levels to activate. Experimental studies, such as those reviewed by Duval
et al. (1983), have demonstrated that deformation along the basal plane is approximately 1000
times faster than non-basal deformation at a given stress level (see Figure 5), underscoring
the importance of the c-axis orientation in ice deformation. This directionality indicates that
the primary deformation occurs in planes orthogonal to the c-axis, which results in a strong
viscoplastic anisotropy for the ice monocrystal.

Figure 5: Strain rate as a function of stress for basal and non-basal deformations (Duval et al.,
1983)
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To accurately model the deformation of ice monocrystals, a �ow law developed by Meyssonnier
and Philip (1996), which incorporates three distinct deformation planes, can be applied. This
approach provides a relationship between the deviatoric strain rate D and the deviatoric stress
S. Known as the continuous transverse isotropic (CTI) model, this law assigns unique properties
to each of the three principal axes. In the CTI model, the orientation of the ice crystal is
represented by the tensor M = c ⊗ c. Several parameters, including the Glen exponent n,
viscosity ηn, and anisotropy factors α1, α2, α3, are employed to de�ne the velocity law. With
these parameters, the resulting �ow law can be expressed as follows.

S = η∗n

(
2α1D + 2α2M

DTr
(
M D

)
+ α3

(
M D +DM

)D)
η∗n = 2ηn

(
α1Tr

(
D2
)
+ α2Tr

(
M D

)2
+ α3Tr

(
M D2

)) 1−n
2n

(1)

This law is then able to predict deformations in ice crystall has is has been tested in Mansuy
et al. (2002).

1.2.5.2 Polycrystalline Nature of Ice

Although ice monocrystals display strong anisotropy, glacial ice typically exists in a polycrys-
talline form, composed of many individual ice crystals with varying orientations. The alignment
of crystals in polycrystalline ice can be visualized using crossed polarized light, producing col-
orful images that re�ect the orientation of individual grains, as shown in Figure 6.

0 1 cm

Figure 6: Image of polycrystalline ice viewed through crossed polarized light

Due to the anisotropic nature of individual ice grains, polycrystalline ice can also exhibit
anisotropic behavior depending on the orientation distribution of these grains. Pole �gures
are commonly used to present a statistical overview of crystal orientations in polycrystalline
ice, o�ering insight into its overall texture and behavior .
These �gures are created by projecting the c axis of each ice crystal onto a disk, similar to a
stereographic projection, as shown in Figure 7.
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Projected point

Figure 7: Example of a stereographic projection

This projection (see Figure 8a) can then be processed to display a continuous map of the
orientations by plotting the density of points in a local area (see Figure 8b), this process make
the representation easier to understand and allows for comparaison between di�erent textures.

(a) Mesured points projected (Montagnat, 2001)
(b) Density of points

Figure 8: Examples of pole �gures for uniaxial compression textures

1.2.5.3 Texture évolution of ice under deformation

Under deformation, polycrystalline ice undergoes texture evolution. This phenomenon can be
observed, for instance, in deep ice cores where, despite low temperatures at the top of the
core that prevent other processes, the ice texture changes due to deformation. This e�ect is
evident in the EPICA ice core at Dome C (Durand et al., 2009). Along the ice core, the texture
evolves, beginning with a predominantly uniform orientation, then converging toward a single
maximum, as shown in Figure 9.

Figure 9: Pole �gures showing texture evolution in the EPICA ice core at di�erent depths
(Durand et al., 2009)

The evolution of ice texture due solely to deformation can be described using the Continuous
Transverse Isotropic (CTI) equations developed in Gillet-Chaulet et al. (2005).
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In addition to the CTI equations describing ice �ow, the rotation of the c axis can be represented
by equations from (Gillet-Chaulet et al., 2006) and (Gagliardini et al., 2009), where c is the

axis of the ice crystals, W (u) = 1
2

(
grad (u)− grad (u)T

)
represents the spin rate (with u as

the deformation �eld), D(u) = 1
2

(
grad (u) + grad (u)T

)
represents the strain rate, and λ is a

parameter of the model.

∂c

∂t
= W c− λ

(
D c−

(
cTD c

)
c
)

(2)

This equation describes the evolution of the ice structure due to ice �ow motion but does not
account for other phenomena.

1.2.5.4 Dynamic Recrystallization Processes

When ice experiences sustained stress leading to high strain, as in large ice masses and if the
deformations happens at high temperature (close to the melting point) it undergoes dynamic
recrystallization, a process that transforms the ice texture over time. Dynamic recrystallization
has been observed both in laboratory settings and within natural ice formations (Kipfstuhl et al.,
2009). This process primarily occurs during secondary and tertiary creep stages and accelerates
signi�cantly as temperatures approach the melting point. The evolution of ice texture under
stress has been documented in experiments, as illustrated in Figure 10.

Figure 10: Pole �gures showing texture evolution in a shear test (Journaux et al., 2019)

Several numerical models have been developed to simulate dynamic recrystallization with vary-
ing levels of alignment to experimental data. Among these, the R3iCe model, proposed by
Chauve et al. (2023), is one of the most accurate. This model uses �nite elements to represent
individual ice crystals, calculating stresses within each crystal and adjusting the crystal orien-
tation toward the plane of local resolved shear stress.
To achive this task each ice crystall has an attractor (orientation toward the local resolved
shear stress) de�ned by c0 = 1

2
(e1 ± e3) with ei the eigen vectors of S. Then each ice crystall

is forced toward this attractor at a certain rate de�ned by the recrystalisation parameter ΓRX .
This can be inclued in the equation 2 like so

∂c

∂t
= W c− λ

(
D c−

(
cTD c

)
c
)
+

1

ΓRX

(c0 − c) (3)

The R3iCe model has been validated across di�erent test cases, demonstrating behavior that
closely mimics recrystallization processes observed experimentally. However, due to its compu-
tational demands, this model is not feasible for large-scale applications.

1.2.5.5 Approximation of Ice Behavior in Elmer/Ice

Elmer/Ice provides several simpli�ed �ow laws or rheologies to approximate the mechanical
behavior of ice, each suited to di�erent modeling needs. Choosing an appropriate �ow law is
essential to balance computational e�ciency with realistic simulation results, especially when
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dealing with large-scale models. The following �ow laws are implemented in Elmer/Ice:

Glen's Law: Glen's �ow law, introduced by Glen (1955), is one of the most commonly used
constitutive laws in glaciology. It describes a non-linear, power-law relationship between shear
stress and strain rate, where stress is raised to an exponent typically around 3. This law e�ec-
tively represents the creep behavior of ice, where deformation accelerates with increasing stress
and temperature. Glen's law is widely applicable for general glacier simulations, especially for
steady-state creep under gravitational forces. However, it may not capture details in high-strain
regions, such as near calving fronts or in fast-�owing ice streams.

GOLF Law: The General Orthotropic Linear Flow Law (GOLF) developed by Gillet-Chaulet
et al. (2005) provides a streamlined approach to model the anisotropic behavior of ice within
large-scale ice-sheet simulations. Unlike traditional micro-macro models, which are often com-
plex and computationally demanding, the GOLF law simpli�es implementation by assuming
that ice behaves as a linearly viscous, orthotropic material. The GOLF model characterizes the
fabric of the ice using an orientation distribution function with just two parameters, enabling
e�cient interpolation of �ow parameters for various con�gurations. This approach allows for
adaptable and user-friendly ice �ow simulations that take into account the ice rheology.

CAFFE Law: Proposed by Seddik et al. (2008), the CAFFE (Continuum Anisotropic Flow of
Field Elements) law is tailored for regions with high strain rates where Glen-type laws may not
fully capture the ice behavior. CAFFE introduces advanced constitutive relations to simulate
fast-�owing ice features, such as ice streams, shear margins, or calving fronts. It is particularly
valuable in dynamic ice shelf and fast-moving glacier models, providing a more accurate depic-
tion of rapid deformation processes, albeit with higher computational demands.

Porous Flow Law: Developed by Gagliardini and Meyssonnier (1997), this �ow law accounts for
porosity in ice, such as air- or water-�lled voids in �rn layers or debris-laden ice. By modifying
standard �ow relations, this law models the reduced sti�ness of ice due to the presence of voids,
making it suitable for upper glacier layers or ice sheet areas where compaction and permeability
impact deformation. The porous law also aids in understanding the densi�cation process and
the transition from �rn to solid ice.

Damage Model: The damage model, introduced by Krug et al. (2014), incorporates damage
mechanics to simulate ice weakening over time due to microcracking and fracturing. This law
is particularly relevant in high-stress zones or near calving fronts, where fracturing and damage
accumulation signi�cantly impact glacier behavior. The damage model tracks cumulative dam-
age, which in�uences ice sti�ness and �ow characteristics. While computationally intensive,
this law is essential for simulating calving, rifting, and fracture development, where structural
integrity plays a key role.

Each of these �ow laws presents unique capabilities and is suited to di�erent conditions and
levels of modeling detail. Selecting the appropriate law is key to achieving a realistic balance
between computational e�ciency and accuracy in glacier and ice cap simulations.

1.3 Objective of the Work

The primary objective of this research is to develop a particle tracking tool capable of post-
processing simulation results from �ow simulation software, such as Elmer/Ice, track a particule,
then extract data allong the �ow line and allow for easy computation in the Lagrangian frame of

11



reference . This tracking tool aims to enable users to identify particle paths with notable stress
and strain histories within the glacier �ow. Once identi�ed, the data from these trajectories
can be transferred to the R3iCe model, which will then simulate the evolution of ice structure
along these �ow lines.

The tool is designed to function as an interface between Elmer/Ice and R3iCe, facilitating pre-
dictions of ice textures that may be present at the base of glaciers. By linking �ow dynamics
with detailed recrystallization modeling, this tool provides a comprehensive approach to un-
derstanding the textural changes in ice resulting from its movement and deformation history.
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2 Implementation of a Particle Tracking Algorithm Based

on Elmer/Ice Output

Numerous Elmer/Ice simulation datasets have been made available by the glaciology com-
munity. Given that some of these simulations can take several days to complete on high-
performance computing systems, this project focuses on developing a post-processing tool that
utilizes the output from existing simulations to trace the paths of selected particles. This ap-
proach eliminates the need to re-run complex simulations, allowing results to be post-processed
locally on lower-performance hardware, thereby saving both time and computational resources.

2.1 Output Data Format from Elmer/Ice

Elmer/Ice exports simulation data in a non-proprietary .vtu format. This �le format con-
tains both the mesh structure and the simulation results, including data at each mesh node
and element. The .vtu format is compatible with visualization tools such as kitware, enabling
straightforward data examination. In this work, the Python library Schlömer is used for e�-
cient manipulation of the mesh and associated data �elds.

In Elmer/Ice glacier simulations, the mesh structure follows a speci�c arrangement and consists
solely of wedge elements, due to the way the mesh is generated. The initial step in mesh
creation involves constructing a 2D mesh of the glacier's top surface using triangular elements,
as illustrated in Figure 11.

z

y

x

Figure 11: 2D mesh of the glacier's top surface

This 2D mesh is then extruded in the z-direction based on the ice thickness, resulting in a
3D mesh composed entirely of wedge elements. The top and bottom boundary elements are
triangular, while the side elements are rectangular, as shown in Figure 12.
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Figure 12: 3D extruded mesh

This extrusion-based mesh generation is a straightforward method for creating a 3D mesh that
can be re�ned locally as needed. However, it does have limitations, as it produces elements
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with poor quality on the sides�elements that may be thin yet wide. Such con�gurations can
complicate particle tracking, as illustrated in Figure 13.
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Figure 13: 3D extruded mesh with side elements of poor quality

Once the mesh �le is loaded with meshio, users can access an unsorted list of nodes, along
with lists for each element type�in this case, triangles, squares, and wedges�each listing the
node IDs for that element. Additionally, the simulation's �eld data, such as node velocities, is
readily accessible, providing the essential information required for particle tracking.

2.2 Particle Tracking Inside a Mesh

In this section, we outline the particle tracking method used in this work and explain why it
was selected.

Various methods for particle tracking in �nite element meshes have been developed, primarily
building on the initial method proposed by Cheng et al. (1996). In this approach, the tra-
jectory of a particle is computed based on the initial velocity �eld at the particle's starting
point. An algorithm then determines which mesh face the particle crosses, identifying the
subsequent element containing the particle. This method o�ers high convergence and accu-
racy in tracking. Further re�nements have been made, such as the method by Pokrajac and
Lazic (2002), which introduces polynomial interpolation to ensure continuity between elements.

These particle tracking methods are implemented in tools like Elmer/Ice and ParaView, and
while they are reliable and e�cient, they encounter challenges with complex or low-quality
meshes. Speci�cally, when determining which face the particle passes through, the method
involves calculating the vector product between the face and particle position, which is highly
sensitive to numerical errors. This sensitivity can lead to inconsistencies in low-quality elements.
Additionally, these methods are memory-intensive, making them unsuitable for large-scale mod-
els on lower-performance computers.

2.2.1 Integration Scheme

To create a faster and more robust tracking algorithm that can run on lower-performance com-
puters, a di�erent approach was adopted.

The �rst step is selecting an integration scheme; here, a �rst-order Euler integration scheme
was chosen. This scheme provides the simplest spatial integration but is su�ciently accurate
in this context, as the velocity �elds between elements exhibit minimal variation. To determine
the particle path, the initial position x(t), the velocity �eld v(x(t), t) at location x(t) and time
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t, and a time step dt are required. Using this information, the particle's position at the next
time step is computed as follows:

x(t+ dt) = x(t) + dt · v(x(t), t) (4)

By iteratively applying this formula, the particle's trajectory can be computed over time.
While the �rst-order Euler integration scheme converges more slowly than a second-order
scheme�requiring a smaller time step dt to achieve similar error margins�it is appropriate
here. Since particles typically pass through multiple consecutive points within an element,
and given that the mesh elements are �rst-order (with a linear velocity �eld), using a second-
order integration scheme would not signi�cantly improve accuracy. Instead, it would increase
computational costs unnecessarily.

2.2.2 Locating the Particle Within the Mesh

With the basic principles of the particle tracking method established, we now examine how this
approach can be applied to a 3D model within the �nite element context. In Equation 4, all
elements are available except for the particle's velocity at its initial position. To obtain this
velocity, we use shape functions and the nodal velocity values within the element. This requires
de�ning the shape functions for a wedge element.

N1(a1, a2, a3) =
1

2
a1(1− a3)

N2(a1, a2, a3) =
1

2
a2(1− a3)

N3(a1, a2, a3) =
1

2
(1− a1 − a2)(1− a3)

N4(a1, a2, a3) =
1

2
a1(1 + a3)

N5(a1, a2, a3) =
1

2
a2(1 + a3)

N6(a1, a2, a3) =
1

2
(1− a1 − a2)(1 + a3)

(5)
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a1

6

3

1

2

4

5
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1

1

Figure 14: Reference element for a wedge

With the shape functions de�ned, the velocity at a given point within the element can be
computed using the nodal velocities vi(t):
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v(x(t), t) =
(
v1(t) v2(t) v3(t) v4(t) v5(t) v6(t)

)
·


N1(a1, a2, a3)
N2(a1, a2, a3)
N3(a1, a2, a3)
N4(a1, a2, a3)
N5(a1, a2, a3)
N6(a1, a2, a3)

 (6)

The remaining task is to determine the position of the particle within the reference element,
represented by coordinates a1, a2, a3. There are various algorithmic options for this step. In
Elmer/Ice's standard approach, the element containing the particle is already known, so it only
requires inverting the shape functions to �nd a1, a2, a3. However, in our case, since the element
containing the particle is unknown, we must �rst identify the wedge where the particle is located.

To locate the wedge, we follow several steps. The �rst step is to �nd the nearest wedge to the
particle's position, which begins by identifying the nearest node to the particle. E�ciently navi-
gating between nodes requires reorganizing the mesh structure. Typically, the mesh description
consists of lists like the example shown in Figure 15.
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Figure 15: Example mesh used for explanation

Nodes
x y z
0 0 0
0.1 0 0
0 0.1 0
0.1 0.1 0
0 0 0.1
0.1 0 0.1
0 0.1 0.1
0.1 0.1 0.1

Triangles
1 2 3
2 3 1
6 7 5
6 7 9
2 3 8

Wedges
1 2 3 4 5 6
2 3 1 6 7 5
2 3 8 6 7 9

This basic structure lacks direct relationships between nodes and elements. By inverting the
mesh, we create a list for each node that identi�es the connected wedges. This enables e�cient
navigation through the mesh during particle tracking.
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Nodes
x y z
0 0 0
0.1 0 0
0 0.1 0
0.1 0.1 0
0 0 0.1
0.1 0 0.1
0 0.1 0.1
0.1 0.1 0.1

Triangles
1 2 3
2 3 1
6 7 5
6 7 9
2 3 8

Wedges
1 2 3 4 5 6
2 3 1 6 7 5
2 3 8 6 7 9

Node Relations
Node Connected Wedges
1 1
2 1, 2
3 1, 2
4 1
5 1
6 1, 2
7 1, 2
8 2

With this structure, navigating from node to node requires only a few operations. To move
from one node to an adjacent node, we consult the Node Relations table to identify the wedges
connected to the current node, then select a neighboring node from one of these wedges. This
enables rapid mesh traversal, as it bypasses any need for additional computation or search-
ing, given that the relevant indices are pre-determined. The primary computational demand is
in the initial mesh inversion, which has a linear complexity with respect to the number of nodes.

Once navigation through the mesh is e�cient, the next step is to locate the closest node to a
speci�c point. We start from an initial, random (or strategically chosen) node and compute
the distances between this point and neighboring nodes. The closest node is selected, and the
algorithm iterates until it converges on the nearest node.

Initialization Step 3

Step 1 Step 4

Step 2 Step 5

Target point
Initial node

Exploration nodes

Figure 16: Example of the algorithm for �nding the closest node on a simple mesh

This algorithm is guaranteed to converge only in convex regions, which is not always the case
here. Therefore, it is possible for the algorithm to get stuck in the mesh. To mitigate this
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issue, multiple random starting nodes are used across the mesh, increasing the probability of
successful convergence.

Initialization Step 2

Step 1 Step 3

Target point
Initial node

Exploration nodes

Figure 17: Example of the algorithm encountering a local minimum

With this method, we can reliably locate the closest node to the target point. To identify
the element in which the point resides, the algorithm expands from this node, examining each
neighboring wedge to determine whether the point is within. The �rst step is to establish
criteria for determining whether a point is inside a wedge.

To verify if a point lies within a wedge, we calculate the point's coordinates in the local basis
of the wedge by solving the following system:

xy
z

 =

x1 x2 x3 x4 x5 x6
y1 y2 y3 y4 y5 y6
z1 z2 z3 z4 z5 z6

×


N1(a1, a2, a3)
N2(a1, a2, a3)
N3(a1, a2, a3)
N4(a1, a2, a3)
N5(a1, a2, a3)
N6(a1, a2, a3)

 (7)

This system is highly nonlinear due to the nonlinearity of the shape functions, making it chal-
lenging to solve analytically or numerically. For numerical methods, convergence is particularly
problematic in elements of poor quality.

To address this issue, the wedge element is subdivided into three tetrahedra, as shown below:
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Figure 18: Decomposition of a wedge element into three tetrahedra

This decomposition is not unique, and the node labeling is also �exible. However, this particular
decomposition aligns closely with the reference tetrahedral element, simplifying calculations,
especially for node 4, which should align with a corner of a square face.

With this approach, if the point lies inside the wedge, it will also be within one of the tetrahe-
dra. Once the point's coordinates within a tetrahedron are known, they can be easily translated
to the wedge's base coordinates. While one could verify if the point lies within the wedge by
calculating determinants, this method involves similar computational e�ort but does not yield
the exact location within the wedge.

To compute the point's coordinates, we solve the following system:

xy
z

 =

x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

×


N(a1, a2, a3) = a1
N(a1, a2, a3) = a2
N(a1, a2, a3) = a3

N(a1, a2, a3) = 1− a1 − a2 − a3

 (8)

This system can be further simpli�ed into a linear system:
x
y
z
1

 =


x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4
1 1 1 1

×


1 0 0 0
0 1 0 0
0 0 1 0
−1 −1 −1 1

×


a1
a2
a3
1

 (9)

This linear system can be solved directly or iteratively, with iterative solvers generally yielding
better results in this context.

Once the local coordinates are obtained, we can determine if the point lies within the tetrahe-
dron by verifying that the following inequalities hold:

a1 ≥ 0

a2 ≥ 0

a3 ≥ 0

a1 + a2 + a3 ≤ 1

(10)

The point's coordinates within the entire wedge can then be calculated using translation matri-
ces, which map each tetrahedron's coordinates back to the wedge's local basis. The translation
matrices for the three tetrahedra can be determined from the shape functions and are as follows:
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Mt1 =


1 0 0 0
0 1 0 0
−1 −1 1 −1
1 1 1 1

 (11) Mt2 =


1 0 0 1
0 0 1 0
−1 1 1 1
1 1 1 1

 (12)

Mt3 =


1 0 0 0
0 1 0 1
−1 −1 1 1
1 1 1 1

 (13)

Using these matrices, we can convert coordinates (a1, a2, a3) from one of the tetrahedra to the
wedge's local basis as follows:a1a2

a3


Wedge

=Mti ×

a1a2
a3


Tetrahedroni

(14)

It should be noted that if a point is not inside any tetrahedron, it might still appear to be
within the wedge when examined in the wedge's coordinate system. Therefore, the only re-
liable criterion for determining if a point is within an element is based on its position in the
tetrahedral sub-elements.

With a clear criterion for verifying if a point is inside an element, we can now implement an
algorithm to locate the wedge containing the point. This algorithm tests each wedge around
the node closest to the point. Although testing all wedges in a given volume around the point
is not the most e�cient approach, the algorithm optimizes this process by testing wedges in
order of proximity, starting from those directly connected to the nearest node and gradually
expanding outward. In the �rst step, the wedges touching the node are tested, followed by
those that connect to any node tested in the previous step.

First expansion Second expansion

Figure 19: Example of circular expansion

This approach creates an expanding search pattern in the form of a sphere around the node,
which is e�cient in meshes with uniform element density. However, glacier meshes often have
greater density along the z-axis. To account for this, the expansion pattern is adjusted from a
sphere to an oval shape. Instead of expanding from a single central node, the expansion starts
in parallel from multiple nodes positioned above and below the initial node, ensuring faster
convergence by adapting to mesh density variations. The ovality of the expansion pattern can
be set as a ratio of the mesh density in one direction (x or y) to the density along the z-axis.
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Initial mesh First expansion

Vertical expansion Second expansion

Figure 20: Example of oval expansion

Multiple expansion steps may be required, as the closest node is not always part of the wedge
containing the point, as shown in the following example.

Figure 21: Example where the closest node is not part of the wedge containing the point

With the wedge containing the point identi�ed and local coordinates known, tracking can
proceed smoothly in cases where the particle remains within the mesh.

2.3 Boundary Conditions During Tracking

2.3.1 Types of Boundary Conditions Applied

This section explores the boundary conditions we aim to impose on particle tracking within the
glacier model. Ideally, this section would be unnecessary if the �ow simulation performed by
Elmer/Ice perfectly represented the intended �ow laws and boundary conditions. For example,
an issue that often arises in particle tracking is that a particle may exhibit a velocity that
causes it to move through the glacier bed. This should not happen, as the velocity normal to
the glacier bed should theoretically be zero. This occurs because boundary conditions are not
strictly enforced in the model, and because the tracking algorithm is not continuous. During
the �nal iteration, when a particle is near the glacier surface, the normal velocity component
to the boundary is not set to zero, allowing the particle to cross the boundary if the time step
is too large.

To address this issue, a practical solution is to adjust the particle's position by either forcing
it back within the glacier boundaries or, in some cases, allowing it to disappear.
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In the following sections, we detail the boundary conditions for the glacier bed and the glacier
surface. These two boundary conditions di�er: at the glacier bed, the ice velocity normal to the
Earth's surface is assumed to be zero, and we assume no basal melting occurs. At the glacier
surface, similar boundary conditions apply, but an additional condition must account for ice
accumulation and melting at di�erent points on the glacier surface.

2.3.2 Bottom Boundary Conditions

For the boundary condition at the glacier bed, the goal is to force the particle back into the
glacier to account for inaccuracies in the simulation process. The mathematical principle behind
this concept is straightforward. If the normal to the bed surface is represented by n and the
particle's position outside the glacier is xout, then we can compute the particle's position within
the glacier, xin, as follows:

xin = xout − n · xout (15)

This task becomes more complex when the bed surface is non-planar and is de�ned using tri-
angular elements. To implement this projection solution in a �nite element model, we �rst
need to locate the element where the face is closest to the point xout. Similar to the previous
section, the initial step is to �nd the nearest node to the point within our mesh. Once this
node is identi�ed, the algorithm will start checking if the point is inside any nearby elements.
Since our point is outside the mesh, the algorithm will halt once the maximum expansion is
reached. For each element checked, the algorithm calculates the distance between xout and the
nearest point within the element. The wedge with the smallest distance is then selected for the
projection.

Once the wedge is selected, by de�nition, the closest point within the element to another point
outside it is the projection of that point onto the element. To determine this closest point in
relation to xout, the wedge is again divided into three tetrahedra. For each tetrahedron, we
identify the nearest point, and the closest point among these is taken as the closest point within
the wedge.

To calculate this closest point, we divide the space around the tetrahedron into di�erent regions
and analytically compute the projection. In Table 1, aout represents the coordinates of xout in
the local basis of the wedge, and ain represents the coordinates of the projected point xin.
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Area of Validity Projection Formula Area of Validity Projection Formula
Projection to a Point

ain =

0
0
1

 ain =

0
1
0



ain =

1
0
0

 ain =

0
0
0


Projection to a Line

ain =

 0
a2out
1

 ain = 1
2

1 + a1out − a2out
1− a1out + a2out

0



ain =

a1out0
0

 ain = 1
2

 0
1 + a2out − a3out
1− a2out + a3out



ain =

 0
0

a3out

 ain = 1
2

1 + a1out − a3out
0

1− a1out + a3out


Projection to a Face

ain =

 0
a2out
a3out

 ain =

a1out0
a3out



ain =

a1outa2out
0

 ain = 1
3

1 + 2a1out − a2out − a3out
1− a1out + 2a2out − a3out
1− a1out − a2out + 2a3out


Table 1: Table of projection of a point inside a tetrahedron

Now that we have the coordinates of the projected point in the local basis, we need to convert
them to global coordinates to compute the distance to the initial point xout, using Equation 8.
Once we obtain xin, we can compute the distance d as:

d = ||xin − xout|| (16)

This distance is calculated for all wedges around the closest node, and the wedge with the small-
est d is selected. The point for the next iteration is set to xin. This method enables e�cient
reprojection of a point into the mesh, even in complex and intricate meshes, and provides the
local coordinates in the element's basis (derived initially in the tetrahedral basis but converted
to the wedge basis via matrix multiplication).

As the particle approaches the glacier bed, where the velocity is predominantly normal to the

23



surface, it may end up being reprojected repeatedly to nearly the same location. In such cases,
it becomes ine�cient to continue tracking, as the particle provides no new information and
consumes computational resources.

v

Figure 22: Example of a particle repeatedly reprojected near its initial location

In such cases, a criterion can be introduced where the e�ective velocity (the norm of the distance
between the initial and �nal positions after reprojection, divided by the time step) is compared
to a threshold, such as the minimum velocity in the mesh. If this e�ective velocity is below the
threshold, the particle can be removed from the simulation.

2.3.3 Top Boundary Conditions

The top boundary layer of a glacier can be treated similarly to the bottom layer in terms of
particle reprojection. Particles that exit the mesh at the top need to be reprojected back into
the glacier. This is particularly important because, in �ow simulations, the top surface is de-
�ned as a free surface, allowing non-zero normal velocity. The reprojection process follows the
same steps as for the bottom boundary, and particles with low velocity are removed in a similar
manner.

The main addition for the top boundary layer is that particles are removed if they are in the
ablation area and the normal component of their velocity is too high. To implement this, we
�rst de�ne the ablation and accumulation zones, which can be done by setting an altitude
threshold that separates the two regions.

Once the altitude threshold is de�ned, two cases arise. In the accumulation area, if a particle
exits the glacier, it is reprojected back into the mesh as before. In the ablation area, however,
the normal component of the particle's velocity is calculated as follows:

v% =
xn+1out − xn

||xn+1out − xn||
·
xn+1out − xn+1in

||xn+1out − xn+1in||
(17)

v%

xn

xn+1out

xn+1in

Figure 23: Calculation of particle angle with respect to the surface

If the velocity percentage v% exceeds a speci�ed threshold, the particle is removed. Allowing
particles to continue their path in the ablation area when the angle is low helps mitigate
sensitivity to surface roughness in the mesh. Furthermore, setting this threshold to prevent
any particle melting enables the simulation of rock dynamics trapped within the ice, o�ering
additional applications for the algorithm.
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3 Extraction of Data Along a Flow Line

The particle tracking algorithm enables precise prediction of the trajectory of any given initial
particle, which provides valuable insight into the glacier's internal �ow. However, tracking data
alone is insu�cient for some purposes, such as determining the cumulative deformation of a
particle, which o�ers clues about the �nal ice texture. To obtain this information, additional
parameters need to be integrated alongside the trajectory.

3.1 Computing the Strain Rate

Since Elmer/Ice does not compute the strain rate by default, it must be derived from the
velocity �eld. By de�nition, we know that:

Ė =
1

2

(
grad(v) + grad(v)T

)
(18)

To calculate the gradient of the velocity �eld, we �rst compute the derivatives of the shape
functions, which can be expressed in matrix form as follows:

DN(a1, a2, a3) =



∂N1

∂a1

∂N1

∂a2

∂N1

∂a3
∂N2

∂a1

∂N2

∂a2

∂N2

∂a3
∂N3

∂a1

∂N3

∂a2

∂N3

∂a3
∂N4

∂a1

∂N4

∂a2

∂N4

∂a3
∂N5

∂a1

∂N5

∂a2

∂N5

∂a3
∂N6

∂a1

∂N6

∂a2

∂N6

∂a3


=



1
2
(1− a3) 0 −1

2
a1

0 1
2
(1− a3) −1

2
a2

−1
2
(1− a3) −1

2
(1− a3) −1

2
(1− a1 − a2)

1
2
(1 + a3) 0 1

2
a1

0 1
2
(1 + a3)

1
2
a2

−1
2
(1 + a3) −1

2
(1 + a3)

1
2
(1− a1 − a2)

 (19)

Once the shape function derivatives are computed, the Jacobian for the complete wedge can be
derived as:

J =

x1 x2 x3 x4 x5 x6
y1 y2 y3 y4 y5 y6
z1 z2 z3 z4 z5 z6

×DN(a1, a2, a3) (20)

With the Jacobian computed, it can then be numerically inverted, allowing the velocity gradient
to be calculated as follows:

grad(v) = DN(a1, a2, a3)× J−1 ×
(
v1 v2 v3 v4 v5 v6

)
(21)

By implementing these equations, the strain rate �eld can be computed at each node, enabling
a comprehensive understanding of strain rates throughout the model.

3.2 Computing the Flow Line Local Basis Rotations

The objective in this section is to compute the rotation matrix between the main reference
frame and the local frame of reference associated with the particle. First, we de�ne the ro-
tation angles between the trajectory and the reference frame, allowing us to create a rotation
matrix that facilitates transformations between the two frames.

For the rotation angles, we will use the Euler 321 sequence, as it is straightforward to implement
in our case. The tangent vector to the �ow line can be calculated by normalizing the vector
between two consecutive points:
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tn =
xn+1 − xn

||xn+1 − xn||
(22)

When performing linear interpolation as shown here, this method utilizes all available data.

xn
xn+1

tn

Figure 24: Tangent to the path

The rotation matrices associated with the 321 sequence in this case are:

R1 =

1 0 0
0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)


R2 =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)


R3 =

 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1


(23)

Since we only have the tangent to the �ow line, we can determine only two rotations, as any
rotation around the tangential vector has no e�ect. To simplify, we assume ϕ = 0. This
assumption can be veri�ed for ice �ow simulations by observing that particles around a central
one do not orbit. With this approximation, the rotation matrix becomes:cos(θ) cos(ψ) cos(θ) sin(ψ) − sin(θ)

− sin(ψ) cos(ψ) 0
sin(θ) cos(ψ) sin(θ) sin(ψ) cos(θ)

 (24)

If we want the tangential vector to be a rotation of the vector

1
0
0

, we can express this rotation
as: txty

tz

 =

cos(θ) cos(ψ) cos(θ) sin(ψ) − sin(θ)
− sin(ψ) cos(ψ) 0

sin(θ) cos(ψ) sin(θ) sin(ψ) cos(θ)

×

1
0
0

 (25)

From this, the angles can be calculated as follows:

ψ = − sin−1(ty)

θ = tan−1

(
tx
tz

)
(26)

After calculating the angles, they are �ltered to ensure a continuous motion of the reference
frame, as particle tracking does not always guarantee continuity.

26



We can now create rotation matrices to switch between the global and local frames of reference:

Rglobal→local =

cos(θ) cos(ψ) cos(θ) sin(ψ) − sin(θ)
− sin(ψ) cos(ψ) 0

sin(θ) cos(ψ) sin(θ) sin(ψ) cos(θ)


Rlocal→global =

cos(θ) cos(ψ) − sin(ψ) sin(θ) cos(ψ)
cos(θ) sin(ψ) cos(ψ) sin(θ) sin(ψ)
− sin(θ) 0 cos(θ)

 (27)

Now, if we have a tensor in the global basis, such as the strain rate tensor, it can be converted
to the local basis as follows:

Elocal = RT
global→local × Eglobal ×Rglobal→local (28)

3.3 Integration of the Strain

Once the strain in the local basis is computed, it can be integrated. However, this integration
cannot be performed step-by-step as it would be for small deformations, because the following
formula is only valid under small deformation assumptions:

E
t+1

= Et + Ė(t) dt (29)

3.3.1 Method for Strain Integration

To accurately compute strain in the context of high deformations, we return to the de�nition
of strain. The strain tensor E can be expressed in terms of the deformation tensor as follows:

E =
1

2

(
FT × F− I

)
(30)

The deformation tensor, F, can be de�ned in terms of an initial vector dl0 and its deformed
state dl:

dl = F dl0 (31)

If we consider multiple deformation steps applied sequentially, then we have:

dl1 = F
1
dl0

dl2 = F
2
dl1

...

dln−1 = F
n−1

dln−2

dln = F
n
dln−1

(32)

These steps can be combined to obtain:

dln =
n∏

i=1

F
i
dl0 (33)

By rearranging the de�nition of the strain tensor, we arrive at:
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F
tot

=
n∏

i=1

F
i
=

n∏
i=1

√
2E

i
+ I (34)

Injecting this relation into the strain de�nition gives the total strain:

E
tot

=
1

2

(
n∏

i=1

(2E
i
+ I)− I

)
(35)

The strain tensor can also be expressed in terms of the strain rate tensor:

E
tot

=
1

2

(
n∏

i=1

(2Ė
i
dt+ I)− I

)
(36)

This method allows us to compute the total strain of an ice particle under high deformation
conditions. Additionally, the eigenvalues and eigenvectors of this matrix can be calculated to
provide further insight into the deformation characteristics.

3.3.2 Method for High Precision in the Eigenvalues of Strain

A challenge remains with this method when applied numerically, especially under conditions
of very high deformation. This issue arises in two key situations when attempting to use
the integrated strain results. First, when calculating the volume deformation of the particle,
the results are often inaccurate, despite our prior knowledge that the volume should remain
constant, as we assume ice to be incompressible. Second, when computing the eigenvalues of
the strain, we often �nd that only the �rst eigenvalue retains high precision, while the others
may be signi�cantly inaccurate. This problem occurs because the particle undergoes substantial
deformation, which, from a mathematical perspective, means that calculating the eigenvalues
involves subtracting large values to obtain small, precise results�a process that requires an
impractical level of numerical precision in the strain tensor.

Initial particule Deformed particuleFinal deformation

Figure 25: Very high deformation of the particle

To address this, we need a method that integrates strain along the �ow path while diagonalizing
at each step to maintain precision and preserve incompressibility.

Starting from the �nal formula derived previously, we construct a matrix Ptot, representing the
basis in which the total deformation tensor F

tot
is diagonal. With this, we can express F

tot
as:

F
tot

= Ptot Fd

tot
P T
tot =

n∏
i=1

F
i

(37)
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Instead of using the matrix inverse, we use its transpose here, since F
tot

is symmetric and real,
making it orthogonally diagonalizable.

Additionally, we diagonalize the incremental strain tensors F
i
with their respective transforma-

tion matrices Pi as follows:

F
i
= Pi Fd

i
P T
i (38)

This result can then be substituted into the previous formula:

F
tot

= Ptot Fd

tot
P T
tot =

n∏
i=1

Pi Fd

i
P T
i (39)

Rewriting this formula iteratively, we obtain:

Ptoti+1
Fd

toti+1
P T
toti+1

= Ptoti F
d

toti
P T
toti

F
i

(40)

By multiplying on the right side by I = PtotiP
T
toti

, we get:

Ptoti+1
Fd

toti+1
P T
toti+1

= Ptoti F
d

toti
P T
toti

F
i
PtotiP

T
toti

(41)

The remaining task is to diagonalize the product Fd

toti
(P T

toti
F
i
Ptoti), which consists of a diagonal

matrix and a symmetric matrix with real values. This is feasible since F is symmetric, and the
change of basis preserves this property. Additionally, the determinant of each F tensor should

be one (re�ecting volume conservation), so the determinant of (P T
toti

F
i
Ptoti) is also one.

To diagonalize the product of a diagonal matrix D and a symmetric matrix S without directly
multiplying them (to avoid loss of precision), we can calculate the characteristic polynomial of
their product. For a 3x3 matrix, one form of the characteristic polynomial is:

X3 − tr(DM)X2 − 1

2

(
tr((DM)2)− tr(DM)2

)
X − det(DM) (42)

Applying this with the previous assumptions, we obtain:

a = tr(DM) = λ1 + λ2 + λ3 = d11m11 + d22m22 + d33m33 (43)

b =
1

2

(
tr((DM)2)− tr(DM)2

)
= λ1λ2 + λ2λ3 + λ3λ1 (44)

= d11d22(m11m22 −m2
12) + d11d33(m11m33 −m2

13) + d33d22(m33m22 −m2
32) (45)

1 = det(DM) = λ1λ2λ3 (46)

Thus, the problem reduces to �nding the roots of the following polynomial:

X3 − aX2 + bX − 1 (47)

This polynomial generally takes the following shape in our case:
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Figure 26: Characteristic polynomial of the matrix DM

However, �nding the roots of this polynomial can still lead to low precision in the smaller
eigenvalues, as the polynomial is quite steep around the two largest eigenvalues. To minimize
the in�uence of the largest eigenvalue on the two smaller ones, we reduce the polynomial's order
by treating the X3 term as negligible in the interval [0, 1]. This simpli�cation yields:

X2 − b

a
X +

1

a
(48)

The ratio b
a
can be computed analytically, simplifying under the assumptions d11m11 ≫ d22m22

and d11m11 ≫ d33m33, which hold since all values of M are of similar order and d11 is the
highest eigenvalue:

b

a
=
d11d22(m11m22 −m2

12) + d11d33(m11m33 −m2
13) + d33d22(m33m22 −m2

32)

d11m11 + d22m22 + d33m33

(49)

≈ d22

(
m22 −

m2
12

m11

)
+ d33

(
m33 −

m2
13

m11

)
(50)

With this approach, we can compute the lower eigenvalues with high precision, as this simpli�ed
polynomial maintains the same lower eigenvalues but has a gentler gradient near the roots.

1

Figure 27: Characteristic polynomial of matrix DM and approximation for smaller roots

This approach addresses cases where one eigenvalue is very large and the other two are relatively
small, representing a particle deforming into a needle shape. For cases where the particle
deforms into a sheet shape, resulting in one small eigenvalue and two large ones, the function
behaves as follows:
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Figure 28: Characteristic polynomial with one small eigenvalue

In this case, we apply a similar simpli�cation based on our new assumptions, yielding the
following polynomial for root �nding:

X − 1

b
(51)

This is a �rst-order approximation of our polynomial, visualized below:

1

Figure 29: Characteristic polynomial with one small eigenvalue

Since the choice between methods depends on the assumptions' validity and applies only under
high deformation, we compute the roots of the original polynomial using all methods and then
reinsert the results into the polynomial. The root closest to zero is selected, ensuring that when
deformation resembles a needle, the smaller roots are from the second-order polynomial, and
when deformation resembles a sheet, the smaller roots are from the �rst-order polynomial.

The remaining task is to compute the eigenvectors. To avoid computing the inverse of the basis
change matrix, we �nd an orthogonal basis of unitary norm eigenvectors.

First, we �nd the eigenvectors with unitary norm by solving:

DMX − λiX + (||X|| − 1)I = 0 (52)

Once the three eigenvectors are obtained, we use the QR decomposition algorithm to orthog-
onalize our matrix of eigenvectors. This decomposition yields a matrix P such that PP T = I
and PFd

toti
(P T

toti
F
i
Ptoti)P is a diagonal matrix.

We then set:

Ptoti+1
= PtotiP

Fd

toti+1
= Fd

toti
(P T

toti
F
i
Ptoti)

(53)

This process can be run iteratively until the �nal step, where we obtain the strain tensor in its
diagonal basis, along with the corresponding eigenvectors.
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4 Implementation of the Particle Tracking Algorithm in a

Python Library

With the theoretical basis for particle tracking established, the method can now be implemented
in a user-friendly Python library designed to model particle �ow paths within a glacier. This
Python library processes output results from Elmer/Ice in either vtu (single-core simulation) or
pvtu (parallelized simulation) �le formats. It opens these �les, tracks user-speci�ed particles,
performs operations on �elds tracked along the �ow path, and includes a visualization interface
for examining various scalar and vector �elds.

This tool is available to everyone on IGE's GitLab repository (Martin, 2024).

4.1 Mesh Tools

In this section, we describe the tools available for working with di�erent meshes and their var-
ious uses.

The �rst tool is a function that converts pvtu �les to vtu �le types. The pvtu �le format is
used for parallelized simulations, where the pvtu �le references multiple �les, each representing
a di�erent part of the mesh, along with the relationships between boundary nodes. Converting
these multiple parallelized �les into a single vtu �le standardizes inputs and speeds up the
program, as working with multiple �les and meshes is time-consuming. Additionally, the par-
allelization options chosen for this library do not depend on mesh partitioning.

Other mesh-related tools include a function to invert the mesh (establishing node-to-wedge
relationships), a parallelized tool to compute the strain rate at each node, and a tool to compute
strain at each node based on Glen's law. Additional tools allow users to select nodes within a
speci�ed area or volume, facilitating access to starting nodes for the particle tracking algorithm.
There is also a function to save modi�cations to the mesh, enabling users to add data (such as
strain and stress) that was not computed during the �ow simulation. Lastly, several internal
tools support these functions, though they are not intended for direct user interaction.

4.2 Tracking Tool

Once the mesh has been imported, the tracking tools can be utilized. The �rst tool allows the
user to track particles in the velocity �eld. This program is parallelized at the particle level,
with each particle representing a separate instance, as they are independent of one another.
The core of this algorithm is written in C++ for enhanced speed, while an internal interface
between C++ functions and Python functions makes the process seamless and transparent to
the user. Notably, tracking can be performed forward or backward in time, allowing users to
place particles at the end of their trajectories and follow them backward. If particle tracking
is done in reverse time, a function reverses all tracked �elds to restore chronological order.

Additional tools allow users to add �elds to a particle's data, such as calculating the particle's
age along the path, determining deformation eigenvalues and eigenvectors, and computing var-
ious anisotropy factors. Mathematical tools are also available to decompose a tensor �eld into
its primary components. Since each particle is represented as a dictionary, data extraction for
further post-processing or simpli�ed representation is straightforward.
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The tool also supports transient particle tracking simulations. By providing multiple meshes
to the code, it can automatically switch from one velocity �eld to another at the correct time
for each particle. This method, while straightforward, e�ciently handles changing velocities
over time. Although linear or higher-order velocity interpolation could be implemented, it is
generally unnecessary since velocity variations between simulations are minimal.

Finally, computed tracking data can be saved by the user for use in other software (e.g., �les
are exported in a txt format and can be opened with spreadsheet applications such as Excel).

4.3 Representation Tools

The �nal main capability of IceTrackPy is its ability to represent the di�erent �elds tracked
along particle trajectories. To achieve this, it uses a GPU-accelerated library named Vispy,
which enables fast and smooth rendering of complex visual elements, ideal for representing
intricate glaciological data. Vispy allows for both interactive 3D plotting and 2D projections,
the latter being more suitable for inclusion in written reports.

4.3.1 Visualizing Data Along Particle Trajectories

The �rst step is to represent the mesh. A convenient function automatically plots the mesh, dis-
playing only the top and bottom layers. This approach avoids overlaying excessive information,
making the visualizations clearer.

Figure 30: Mesh of the glacier in a 2D projection

Next, particle trajectories can be added. This can be done in a solid color or using di�erent
�elds to visualize data along each trajectory at each time step.
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Figure 31: Representation of particle trajectories with di�erent colors for each particle

If the user wishes to plot a scalar �eld, a color scale can be added to help visualize the data
and understand its range.

Figure 32: Representation of a scalar value (ice age) along the trajectories

For vector �elds of unitary norm, a color wheel can be used, where each color represents an
orientation. This allows the orientation of the vector to be visualized along its path.
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(a) With non-symmetric color wheel (b) With symmetric color wheel

Figure 33: Representation of a vector (�rst eigenvector) along the trajectories

4.3.2 Visualizing Data on a Surface

Another option for data visualization is to plot data on a surface, such as the surface where
particles emerge from the ice at the glacier's terminus. This approach is particularly useful for
identifying areas with the greatest diversity in anisotropy, for example. To achieve this, the
reverse-time tracking functionality can be utilized. By strategically placing points, a 2D mesh
of the surface can be created and used to represent data, as shown below:

Figure 34: Representation of a scalar value (ice age) on a surface

This function can also be used to represent vector �elds, such as the orientation of principal
deformation for each particle. The vector representation o�ers various symmetries depending
on the chosen color map, so an option has been added to adjust the orientation of the represen-
tation. This allows users to align the color map's symmetry with, for instance, the symmetry
of the glacier, enhancing the e�ectiveness of the color mapping.
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(a) With non-symmetric color wheel (b) With symmetric color wheel

Figure 35: Representation of a vector (�rst eigenvector) at the end of the particle's path

4.4 Creation of a Test Case

To verify and compare the functionality of IceTrackPy with other commercial solutions, a test
case has been created. This test case allows for the validation of each component of the code
with a known solution, enabling users to evaluate various features in a �exible and straightfor-
ward context. This simpli�es debugging and testing processes.

The test must satisfy several criteria: it must respect all physical laws implemented in the par-
ticle tracking software, such as incompressibility; it should represent glacier �ow characteristics,
including particle accumulation at the top and melting at the bottom; and it must have a fully
analytical solution to facilitate direct comparison with the tracking software. Additionally, the
mesh should be structured similarly to how it is implemented in Elmer/Ice so that IceTrackPy
can open this test case.

4.4.1 Velocity Field Justi�cation

To meet the above criteria, the following velocity �eld was chosen:

v(x, y, z, t) =

 vx
−y vz

H

(
1− 2x

L

)
z vz
H

(
1− 2x

L

)
 (54)

This simple velocity �eld allows us to model all the di�erent aspects used by IceTrackPy. The
�eld appears as follows:
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Figure 36: Velocity �eld norm

This velocity �eld is then applied to a mesh created in a similar manner to an Elmer/Ice mesh.
The element shape and density can be adjusted to explore di�erent settings for particle tracking.

(a) 1 element per meter for x, y, z (1/1/1)

(b) 1 element per meter for y, z and 5 elements per meter for x (5/1/1)

(c) 1 element per meter for x, z and 5 elements per meter for y (1/5/1)

Figure 37: Di�erent meshes with varying densities in di�erent directions

4.4.2 Integration of the Di�erent Fields

Now that the velocity �eld is de�ned, it can be integrated to �nd the particle trajectories,
resulting in:
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Φ(x0, y0, z0, t) =


x(t) = vxt+ x0

y(t) = y0e

(
−vz

(L−2x0)t−vxt2

HL

)

z(t) = z0e

(
vz

(L−2x0)t−vxt2

HL

) (55)

The next task is to compute the strain rate �eld. To do this, the �rst step is calculating the
gradient of the velocity �eld as follows:

We can calculate the strain rate from the previously computed values, knowing that:

L = grad(v) =

 0 0 0
2vxy
HL

−vz
H

(
1− 2x

L

)
0

−2vzz
HL

0 vz
H

(
1− 2x

L

)
 (56)

Using the de�nition of the strain rate:

Ė =
1

2
(L+ LT ) (57)

we can compute the strain rate as:

Ė =

 0 yvz
LH

− zvz
LH

yvz
LH

−vz
H

(
1− 2x

L

)
0

− zvz
LH

0 vz
H

(
1− 2x

L

)
 (58)

To compare all tracking parameters, we also need to compute the strain. First, we de�ne the
deformation tensor:

F = grad(Φ) =


1 0 0

y0
2vzt
HL

e

(
−vz

(L−2x0)t−vxt2

HL

)
e

(
−vz

(L−2x0)t−vxt2

HL

)
0

−z0 2vztHL
e

(
vz

(L−2x0)t−vxt2

HL

)
0 e

(
vz

(L−2x0)t−vxt2

HL

)

 (59)

We simplify this with the following notations:

a =
2vzt

HL
(60)

b = vz
(L− 2x0)t− vxt

2

HL
(61)

Using these, we can calculate the strain tensor E:

E =
1

2

a2(y20e−2b + z20e
2b) y0ae

−2b −z0ae2b
y0ae

−2b e−2b − 1 0
−z0ae2b 0 e2b − 1

 (62)

With these computations, we have all the variables necessary to test IceTrackPy and compare
it with other commercial software solutions in various ways.

4.5 Testing and Comparison with Elmer/Ice Particle Tracking

In this section, we will compare IceTrackPy's tracking algorithm with Elmer/Ice's built-in
particle tracking tool.
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4.5.1 Working Principle of Elmer/Ice Particle Tracking

Elmer/Ice includes a tool that allows users to track particles during the simulation, so it is
useful to �rst understand its operation. When tracking a particle with Elmer/Ice, the particle
must initially be assigned to a node. The trajectory is then integrated (with various order op-
tions), and the vectorial product between the trajectory and each face of the wedge is computed
to determine which face the particle crosses. The algorithm ensures that the particle crosses
only one element boundary (adjusting the time step if necessary), and then solves the nonlinear
system to �nd the particle's coordinates in the local basis, allowing the algorithm to obtain the
new velocity and continue.

A primary issue with this algorithm arises when the vectorial product between the trajectory
and the face is nearly parallel, leading to errors where the particle is not located in the correct
element, resulting in a tracking failure. Additionally, in multi-processed simulations, Elmer/Ice
does not reassemble the mesh into a single �le, which can cause particles to be misplaced in
the mesh and prevent the algorithm from converging.

4.5.2 Error Comparison Between the Two Programs

In this section, we will conduct tests in a consistent manner. Multiple particles will be launched
from the same position for each tracking program, and the �eld values of interest will be evalu-
ated at regular intervals (e.g., one year, two years). This approach allows us to track the error
for each particle along its trajectory. Since examining all variables simultaneously is complex,
we will focus on the average, minimum, and maximum errors.

On the Elmer/Ice side, we have opted to use �rst-order integration for comparability with
IceTrackPy (ITP). This setup leads to the following particle paths:

Figure 38: Trajectories of the particles plotted with ice age

The �rst step is to assess mesh sensitivity for both algorithms. For this, we created seven
meshes, beginning with an initial mesh at one element per meter in each direction, then in-
creasing to 10 and 20 elements per meter for each direction while maintaining one element per
meter in the other directions.
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Figure 39: Mesh sensitivity for Elmer/Ice and IceTrackPy

From this �gure, we observe that both solutions exhibit low sensitivity to mesh density in this
simpli�ed model, an important property for particle tracking software. Additionally, we note
that, over time, the maximum and minimum values converge as the number of particles de-
creases. After 35 years, only one particle remains, causing the minimum and maximum values
to coincide.

This mesh-independence has been tested for multiple integration times, yielding consistent re-
sults: these algorithms are truly independent of mesh re�nement.

Next, we compare the two algorithms for di�erent integration times (choosing 0.1-year and
1-year integration time steps here).

Figure 40: Impact of time step count

From this �gure, we observe that both algorithms exhibit identical error at a given time step,
as expected, since this re�ects the minimum possible error for the speci�ed time step and inte-
gration order.

Since Elmer/Ice is not equipped to integrate the strain rate for each particle, the only remaining
variable for comparison is speed. Thus, for each possible mesh con�guration and time step, the
computation time for both algorithms was recorded and can be represented in a bar graph.
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Figure 41: Speed comparison between the two algorithms

Next, a comparison can be made between IceTrackPy and the test case for strain computation.
First, we examine the evolution of eigenvalues over time, using the improved method to reduce
numerical error alongside the classical method for computing strain.

(a) Improved method for computing strain (b) Classical method for computing strain

Figure 42: Evolution of strain in the test case

As shown in the graphs, the improved method provides signi�cantly better results, even though
it is not �awless; after 400 iterations, numerical errors start accumulating, leading to a slight
deviation from the expected values. However, this improved algorithm does not diverge com-
pletely after multiple iterations, unlike the classical method, which shows noticeable divergence
on the �rst eigenvalue after 375 iterations.

This example illustrates the performance on a single particle. To further validate, we compute
the mean, minimum, and maximum errors across all particles in this case, resulting in the
following graphs. Here, the error is calculated by taking the di�erence between the true value
and the integrated value, divided by the maximum value along the path for the true strain,
allowing all errors to be plotted on the same graph.
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(a) Improved method for computing strain (b) Classical method for computing strain

Figure 43: Error evolution in strain computation for the test case

Once again, we observe that the improved algorithm performs better than the classical method,
providing higher precision for the �nal eigenvalues. This demonstrates that IceTrackPy's track-
ing tools are as accurate as commercial solutions for particle tracking, and that its strain inte-
gration tools o�er enhanced reliability over traditional methods.

4.6 Application on the Argentière Glacier

In this section, we apply the tools developed previously to the Argentière Glacier.

4.6.1 Steady-State Model

The �rst step was to perform a simulation using Elmer/Ice of the Argentière Glacier, as provided
in the resources available from Elmer/Ice. This resulted in the following velocity �eld for the
glacier:

Figure 44: Velocity �eld from Elmer/Ice based on the 1907 glacier topography

4.6.2 Steady-State Tracking and Data Visualization

With the velocity �eld established, the particle tracking software can then be executed. All
parameter details can be explored in the IceTrackPy examples. The �rst step is to plot the ice
age along the trajectory to identify any inconsistencies in the tracking.
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Figure 45: Representation of ice age along the path and in the ablation area where melting
occurs

Next, we examine the direction of principal deformation by plotting the orientation of the
primary eigenvector.

Figure 46: Representation of the orientation of principal deformation for particles at the end
of their trajectories

Finally, we analyze di�erent anisotropy factors, such as relative anisotropy, which is de�ned as:

Arel =
σϵi
ϵi

(63)

43



Figure 47: Representation of the relative anisotropy for particles at the end of their trajectories

Using these visualizations, we can then select speci�c particles for further analysis.

4.6.3 Transient Case Model

IceTrackPy can also be applied to a transient case. In this scenario, the simulation was previ-
ously run, and only the output �les from this simulation were provided. The following images
display the evolution of the glacier's velocity �eld over time:

(a) 1907 (b) 1925 (c) 1943

(d) 1961 (e) 1979 (f) 1997

Figure 48: Evolution of the velocity �eld at di�erent times

4.6.4 Transient Case Tracking and Data Visualization

All time steps were imported into IceTrackPy, and the particle tracking algorithm was executed.
Various �elds were then visualized, starting with the ice age along the particle path.
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Figure 49: Representation of the age of ice along the path and in the ablation area where it
melts

Next, the direction of principal deformation was examined by plotting the orientation of the
largest eigenvector.

Figure 50: Representation of the orientation of principal deformation for particles at the end
of their trajectories

Finally, we analyzed various anisotropy factors, such as relative anisotropy:
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Figure 51: Representation of the relative anisotropy for particles at the end of their trajectories

Using these visualizations, we can then select speci�c particles for further analysis.

5 Utilization of Flow Line Data to Model Ice Rheology

The primary objective of this particle tracking tool is to capture the trajectory and stress
history of particles along their �ow path. This extracted data can then be imported into R3iCe
to predict the rheological properties of ice that are likely to be found in the glacier.

5.1 Desired Characteristics in the Flow Line

The �rst parameter of interest is the variation of stress along the particle's path. However, it
is essential that these stresses remain relatively simple, as complex stress histories increase the
uncertainty in predicting the �nal ice texture. Thus, we aim to identify trajectories where the
particle experiences distinct stress conditions:

� Traction-dominated path: Identify trajectories where the particle is primarily under
tensile stress. When input into R3iCe, this type of stress history is expected to produce
speci�c textures.

� Compression-dominated path: Find trajectories where the particle predominantly ex-
periences compressive stress. Comparing the resulting textures from R3iCe with expected
patterns will help validate the model.

� Shear-dominated path: Locate paths where the particle undergoes signi�cant shear.
This is important as recrystallization mechanisms signi�cantly in�uence texture evolution
under shear. Observing the resulting texture on glacier samples would allow for further
comparison and validation.

By isolating and analyzing these speci�c types of stress-dominated trajectories, we aim to better
understand and predict the textural evolution of ice along �ow lines in a glacier.

5.2 Identi�ed Flow Lines on the Argentière Glacier

The following examples highlight speci�c �ow lines where particles predominantly experience
di�erent types of stress, useful for modeling distinct texture evolutions:
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� Traction-dominated �ow line: A path where the particle is primarily under tensile
stress.

Figure 52: Flow path of a particle under tensile stress

� Compression-dominated �ow line: A path where the particle mainly undergoes com-
pressive stress.

Figure 53: Flow path of a particle under compressive stress

� Shear-dominated �ow line: A path where shear is the primary stress acting on the
particle.
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Figure 54: Flow path of a particle under shear stress

5.3 Data Export for R3iCe

After identifying the �ow line, it can be exported for use in R3iCe to simulate texture evolution.
The exported data includes the eigenvalues of the strain rate tensor and the rotation matrix
between the global and local coordinate systems at each time step. This information allows
R3iCe to simulate texture transformations accurately along the particle's path.

The simulation begins by orienting the initial ice texture according to the rotation matrix at
each step, then applying boundary conditions on all sides of a cube representing the particle.
The simulation then runs for one iteration, after which the resulting texture is reoriented into
the global frame using the inverse of the rotation matrix. This process is repeated for each
time step in the particle's trajectory, thereby reconstructing the texture evolution along the
�ow path.

Flow path

texture roation

Evolution of the texture

(texture rotation)−1

Evolution of the texture

t t+1

Rotation matrix

Strain Strain

Rotation matrix

R3iCe

IceTrackPy

texture roation (texture rotation)−1

Rotation matrix Rotation matrix

Figure 55: Implementation of IceTrackPy for texture evolution computation

6 Conclusion

This thesis presents a comprehensive framework for modeling the trajectory and deformation of
particles in glacial environments, employing particle tracking and �ow line analysis through Ice-
TrackPy, a custom-developed tool interfacing with Elmer/Ice and R3iCe. The work addresses
key challenges in glaciology, particularly the need for accurate, e�cient particle tracking in
numerical simulations of glacier �ow. By leveraging a custom particle tracking algorithm, this
research not only ensures independence from high-performance computing requirements but
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also enhances tracking reliability across varied mesh densities, as con�rmed by comparisons
with commercial solutions.

The framework developed here o�ers a novel integration of �ow line data with high-�delity
strain and rheology analysis, enabling the investigation of complex stress and strain histories
along a particle's path. Through carefully designed test cases, the robustness of IceTrackPy
was validated against known analytical solutions, revealing improved accuracy in strain compu-
tation over standard methods, even under high deformation conditions. Additionally, the tool's
visualization capabilities provide new insights into the spatial distribution of key rheological
properties, such as strain anisotropy and principal deformation directions, throughout a glacier.

Applied to real-world data from the Argentière Glacier, the framework demonstrated its capac-
ity to track particles over transient and steady-state models, elucidating important patterns
in ice age, deformation orientation, and anisotropy distribution. These insights contribute to
our understanding of glacial �ow dynamics and serve as a foundation for further study into
ice rheology, particularly by interfacing particle stress and strain histories with R3iCe. The
outcome is a predictive model that can be adapted to various glaciers, providing insights into
their unique �ow characteristics and potential future behaviors.

In conclusion, this thesis advances the capabilities of particle tracking and deformation mod-
eling in glaciology, o�ering a versatile, validated tool for glacier simulation analysis. The
integration of IceTrackPy with Elmer/Ice opens avenues for enhanced rheological studies and
fosters a deeper understanding of glacier dynamics. Future work may extend these methods by
incorporating higher-order velocity interpolations, adaptive meshing, or advanced recrystalliza-
tion models, further re�ning our ability to predict ice behavior under changing environmental
conditions.
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